Ecc Tcl Reference Documentation
Ecc
Current Version: 10.1.0
Elliptical Curve Cryptography class for generating ECDSA keys, computing shared secrets, and creating and verifying ECDSA signatures. Supports the following curves:
- secp256r1 (also known as P-256 and prime256v1)
- secp384r1 (also known as P-384)
- secp521r1 (also known as P-521)
- secp256k1 (This is the curve used for Bitcoin)
- secp192r1
- secp224r1
- brainpoolP160r1
- brainpoolP192r1
- brainpoolP192r1
- brainpoolP224r1
- brainpoolP256r1
- brainpoolP320r1
- brainpoolP384r1
- brainpoolP512r1
Additional curves will be supported in the future.
Object Creation
set myEcc [new CkEcc]
Properties
AsnFormat
set boolVal [CkEcc_get_AsnFormat $myEcc]
CkEcc_put_AsnFormat $myEcc $boolVal
If 1, the ECDSA signatures produced by this object will use ASN.1 format. Otherwise the ECDSA signature will be a concatenation of the two raw byte arrays for r and s.
ECDSA signatures have two equal sized parts, r and s. There are two common formats for encoding the signature:
(a) Concatenating the raw byte array of r and s
(b) Encoding both into a structured ASN.1 / DER sequence.
DebugLogFilePath
# ckStr is a CkString
CkEcc_get_DebugLogFilePath $myEcc $ckStr
set strVal [CkEcc_get_debugLogFilePath $myEcc]
CkEcc_put_DebugLogFilePath $myEcc $strVal
If set to a file path, causes each Chilkat method or property call to automatically append it's LastErrorText to the specified log file. The information is appended such that if a hang or crash occurs, it is possible to see the context in which the problem occurred, as well as a history of all Chilkat calls up to the point of the problem. The VerboseLogging property can be set to provide more detailed information.
This property is typically used for debugging the rare cases where a Chilkat method call hangs or generates an exception that halts program execution (i.e. crashes). A hang or crash should generally never happen. The typical causes of a hang are:
- a timeout related property was set to 0 to explicitly indicate that an infinite timeout is desired,
- the hang is actually a hang within an event callback (i.e. it is a hang within the application code), or
- there is an internal problem (bug) in the Chilkat code that causes the hang.
LastErrorHtml
# ckStr is a CkString
CkEcc_get_LastErrorHtml $myEcc $ckStr
set strVal [CkEcc_get_lastErrorHtml $myEcc]
Provides information in HTML format about the last method/property called. If a method call returns a value indicating failure, or behaves unexpectedly, examine this property to get more information.
topLastErrorText
# ckStr is a CkString
CkEcc_get_LastErrorText $myEcc $ckStr
set strVal [CkEcc_get_lastErrorText $myEcc]
Provides information in plain-text format about the last method/property called. If a method call returns a value indicating failure, or behaves unexpectedly, examine this property to get more information.
LastErrorXml
# ckStr is a CkString
CkEcc_get_LastErrorXml $myEcc $ckStr
set strVal [CkEcc_get_lastErrorXml $myEcc]
Provides information in XML format about the last method/property called. If a method call returns a value indicating failure, or behaves unexpectedly, examine this property to get more information.
topLastMethodSuccess
set boolVal [CkEcc_get_LastMethodSuccess $myEcc]
CkEcc_put_LastMethodSuccess $myEcc $boolVal
Indicate whether the last method call succeeded or failed. A value of 1 indicates success, a value of 0 indicates failure. This property is automatically set for method calls. It is not modified by property accesses. The property is automatically set to indicate success for the following types of method calls:
- Any method that returns a string.
- Any method returning a Chilkat object, binary bytes, or a date/time.
- Any method returning a standard boolean status value where success = 1 and failure = 0.
- Any method returning an integer where failure is defined by a return value less than zero.
Note: Methods that do not fit the above requirements will always set this property equal to 1. For example, a method that returns no value (such as a "void" in C++) will technically always succeed.
topUtf8
set boolVal [CkEcc_get_Utf8 $myEcc]
CkEcc_put_Utf8 $myEcc $boolVal
When set to 1, all "const char *" arguments are interpreted as utf-8 strings. If set to 0 (the default), then "const char *" arguments are interpreted as ANSI strings. Also, when set to 1, and Chilkat method returning a "const char *" is returning the utf-8 representation. If set to 0, all "const char *" return values are ANSI strings.
topVerboseLogging
set boolVal [CkEcc_get_VerboseLogging $myEcc]
CkEcc_put_VerboseLogging $myEcc $boolVal
If set to 1, then the contents of LastErrorText (or LastErrorXml, or LastErrorHtml) may contain more verbose information. The default value is 0. Verbose logging should only be used for debugging. The potentially large quantity of logged information may adversely affect peformance.
topVersion
Methods
GenEccKey
# curveName is a string
# prng is a CkPrng
set ret_privateKey [CkEcc_GenEccKey $curveName $prng]
Generates an ECDSA private key. The curveName specifies the curve name which determines the key size. The prng provides a source for generating the random private key.
The following curve names are accepted:
- secp256r1 (also known as P-256 and prime256v1)
- secp384r1 (also known as P-384)
- secp521r1 (also known as P-521)
- secp256k1 (This is the curve used for Bitcoin)
- secp192r1
- secp224r1
- brainpoolP160r1
- brainpoolP192r1
- brainpoolP192r1
- brainpoolP224r1
- brainpoolP256r1
- brainpoolP320r1
- brainpoolP384r1
- brainpoolP512r1
Returns NULL on failure
GenEccKey2
# curveName is a string
# encodedK is a string
# encoding is a string
set ret_privateKey [CkEcc_GenEccKey2 $curveName $encodedK $encoding]
Generates an ECDSA private key using a specified value for K. The curveName specifies the curve name which determines the key size. The encodedK is the encoded value of the private key. The encoding is the encoding used for encodedK, which can be "hex", "base64", "decimal", etc.
Note: This method is typically used for testing -- such as when the same private key is desired to produce results identical from run to run.
The following curve names are accepted:
- secp256r1 (also known as P-256 and prime256v1)
- secp384r1 (also known as P-384)
- secp521r1 (also known as P-521)
- secp256k1 (This is the curve used for Bitcoin)
- secp192r1
- secp224r1
- brainpoolP160r1
- brainpoolP192r1
- brainpoolP192r1
- brainpoolP224r1
- brainpoolP256r1
- brainpoolP320r1
- brainpoolP384r1
- brainpoolP512r1
Returns NULL on failure
SharedSecretENC
# pubKey is a CkPublicKey
# encoding is a string
# outStr is a CkString (output)
set status [CkEcc_SharedSecretENC $privKey $pubKey $encoding $outStr]
set retStr [CkEcc_sharedSecretENC $myEcc $privKey $pubKey $encoding]
Computes a shared secret given a private and public key. For example, Alice and Bob can compute the identical shared secret by doing the following: Alice sends Bob her public key, and Bob calls SharedSecretENC with his private key and Alice's public key. Bob sends Alice his public key, and Alice calls SharedSecretENC with her private key and Bob's public key. Both calls to SharedSecretENC will produce the same result. The resulting bytes are returned in encoded string form (hex, base64, etc) as specified by encoding.
Note: The private and public keys must both be keys on the same ECDSA curve.
Returns 1 for success, 0 for failure.
SignBd
# hashAlg is a string
# encoding is a string
# privKey is a CkPrivateKey
# prng is a CkPrng
# outStr is a CkString (output)
set status [CkEcc_SignBd $bdData $hashAlg $encoding $privKey $prng $outStr]
set retStr [CkEcc_signBd $myEcc $bdData $hashAlg $encoding $privKey $prng]
This method is the same as SignHashENC, except the actual data to be signed and the name of the hash algorithm is passed in. The following hash algorithms are supported: sha256, sha384, and sha512.
Returns 1 for success, 0 for failure.
SignBdUsingCert
# hashAlg is a string
# encoding is a string
# cert is a CkCert
# outStr is a CkString (output)
set status [CkEcc_SignBdUsingCert $bdData $hashAlg $encoding $cert $outStr]
set retStr [CkEcc_signBdUsingCert $myEcc $bdData $hashAlg $encoding $cert]
Same as SignBd, but instead uses the private key of a certificate (assuming the cert's private key is ECDSA).
Returns 1 for success, 0 for failure.
topSignHashENC
# encoding is a string
# privkey is a CkPrivateKey
# prng is a CkPrng
# outStr is a CkString (output)
set status [CkEcc_SignHashENC $encodedHash $encoding $privkey $prng $outStr]
set retStr [CkEcc_signHashENC $myEcc $encodedHash $encoding $privkey $prng]
Computes an ECDSA signature on a hash. ECDSA signatures are computed and verified on the hashes of data (such as SHA1, SHA256, etc.). The hash of the data is passed in encodedHash. The encoding, such as "base64", "hex", etc. is passed in encoding. The ECDSA private key is passed in the 3rd argument (privkey). Given that creating an ECDSA signature involves the generation of random numbers, a PRNG is passed in the 4th argument (prng). The signature is returned as an encoded string using the encoding specified by the encoding argument.
Returns 1 for success, 0 for failure.
SignHashUsingCert
# encoding is a string
# cert is a CkCert
# outStr is a CkString (output)
set status [CkEcc_SignHashUsingCert $encodedHash $encoding $cert $outStr]
set retStr [CkEcc_signHashUsingCert $myEcc $encodedHash $encoding $cert]
Computes an ECDSA signature on a hash. ECDSA signatures are computed and verified on the hashes of data (such as SHA1, SHA256, etc.). The hash of the data is passed in encodedHash. The encoding, such as "base64", "hex", etc. is passed in encoding. The certificate having a private key is passed in cert. The signature is returned as an encoded string using the encoding specified by the encoding argument.
Returns 1 for success, 0 for failure.
topVerifyBd
# hashAlg is a string
# encodedSig is a string
# encoding is a string
# pubkey is a CkPublicKey
set retInt [CkEcc_VerifyBd $bdData $hashAlg $encodedSig $encoding $pubkey]
This method is the same as VerifyHashENC, except the actual data to be verified and the name of the hash algorithm is passed in. The following hash algorithms are supported: sha256, sha384, and sha512.
VerifyHashENC
# encodedSig is a string
# encoding is a string
# pubkey is a CkPublicKey
set retInt [CkEcc_VerifyHashENC $encodedHash $encodedSig $encoding $pubkey]
Verifies an ECDSA signature. ECDSA signatures are computed and verified on the hashes of data (such as SHA1, SHA256, etc.). The hash of the data is passed in encodedHash. The encoded signature is passed in encodedSig. The encoding of both the hash and signature, such as "base64", "hex", etc. is passed in encoding. The ECDSA public key is passed in the last argument (pubkey).
The method returns 1 for a valid signature, 0 for an invalid signature, and -1 for any other failure.