TChilkatRsa Delphi ActiveX Reference Documentation

TChilkatRsa

Current Version: 10.1.0

RSA encryption component / library. Encrypt and decrypt byte arrays and strings. Generate public/private key pairs from 384 to 4096 bits in length. Import and export RSA keys. Import keys from SNK files. Input/output in raw binary, base64, hex encoding, quoted-printable, URL-encoding, etc.

Importing the Chilkat ActiveX into Delphi

Important: When upgrading to a new version of Chilkat, make sure to re-imported ActiveX DLL into Delphi to regenerate the files described below.


Chilkat v9.5.*: If using Chilkat v9.5.*, then use "Chilkat_v9_5_0_TLB" instead of "Chilkat_TLB", and the DLLs are named ChilkatAx-9.5.0-win32.dll (or ChilkatAx-9.5.0-x64.dll).


Two things are required to use an ActiveX in Delphi:

  1. The ActiveX DLL needs to be registered via regsvr32 on the system where the Delphi application runs. See How To Register ActiveX DLLs for detailed information.
  2. See also: ActiveX Registration Tutorial
  3. The ActiveX component needs to be "imported". Use the Delphi Import Component Wizard to import the Chilkat type library. This creates the following files: Chilkat_TLB.pas and Chilkat_TLB.dcr. The Chilkat_TLB.pas should be added to your project.

To import the Chilkat type library, do the following:

  1. In the Delphi RAD Studio, select the menu item "Component" --> "Import a Type Library".
  2. Find "Chilkat ActiveX" in the list and select it. This will only appear in the list if the ChilkatAx-win32.dll (or ChilkatAx-x64.dll) has been registered w/ regsvr32.
  3. Check the "Generate Component Wrappers" checkbox.
  4. Select a directory where the unit files (.pas and .dcr) should be generated.
  5. Select "Create Unit" and then "Finish".
  6. Add the .pas to your Delphi project.

To use a Chilkat ActiveX object in your Delphi code, add "Chilkat_TLB" to the "uses" statement. For example:

uses
  Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, System.Classes, Vcl.Graphics,
  Vcl.Controls, Vcl.Forms, Vcl.Dialogs, Vcl.StdCtrls, Chilkat_TLB;

Object Creation

var
obj: TChilkatRsa;
...
begin
obj := TChilkatRsa.Create(Self);
...
// When finished, free the object instance.
obj.Free();

Properties

Charset
property Charset: WideString

This property only applies when encrypting, decrypting, signing, or verifying signatures for strings. When encrypting strings, the input string is first converted to this charset before encrypting.

When decrypting, the decrypted data is interpreted as a string with this charset encoding and converted to the appropriate return. For example, ActiveX's returning strings always return Unicode (2 bytes/char). Java strings are utf-8. Chilkat C++ strings are ANSI or utf-8. .NET strings are Unicode.

The default value of this property is the ANSI charset of the local computer.

When signing string data, the input string is first converted to this charset before being hashed and signed. When verifying the signature for string data, the input string is first converted to this charset before the verification process begins.

top
DebugLogFilePath
property DebugLogFilePath: WideString

If set to a file path, causes each Chilkat method or property call to automatically append it's LastErrorText to the specified log file. The information is appended such that if a hang or crash occurs, it is possible to see the context in which the problem occurred, as well as a history of all Chilkat calls up to the point of the problem. The VerboseLogging property can be set to provide more detailed information.

This property is typically used for debugging the rare cases where a Chilkat method call hangs or generates an exception that halts program execution (i.e. crashes). A hang or crash should generally never happen. The typical causes of a hang are:

  1. a timeout related property was set to 0 to explicitly indicate that an infinite timeout is desired,
  2. the hang is actually a hang within an event callback (i.e. it is a hang within the application code), or
  3. there is an internal problem (bug) in the Chilkat code that causes the hang.

More Information and Examples
top
EncodingMode
property EncodingMode: WideString

Encoding mode to be used in methods ending in "ENC", such as EncryptStringENC. Valid EncodingModes are "base64", "hex", "url", or "quoted-printable" (or "qp"). Encryption methods ending in "ENC" will return encrypted data as a string encoded according to this property's value. Decryption methods ending in "ENC" accept an encoded string as specified by this property. The string is first decoded and then decrypted. The default value is "base64".

This property also applies to the "ENC" methods for creating and verifying digital signatures.

More Information and Examples
top
LastBinaryResult
property LastBinaryResult: OleVariant readonly

The binary data returned by the last (binary data returning) method called. Only available if Chilkat.Global.KeepBinaryResult is set to 1. This provides a means for obtaining large varbinary results in the SQL Server environment (where limitations exist in getting large amounts of data returned by method calls, but where temp tables can be used for binary properties).

top
LastErrorHtml
property LastErrorHtml: WideString readonly

Provides information in HTML format about the last method/property called. If a method call returns a value indicating failure, or behaves unexpectedly, examine this property to get more information.

top
LastErrorText
property LastErrorText: WideString readonly

Provides information in plain-text format about the last method/property called. If a method call returns a value indicating failure, or behaves unexpectedly, examine this property to get more information.

top
LastErrorXml
property LastErrorXml: WideString readonly

Provides information in XML format about the last method/property called. If a method call returns a value indicating failure, or behaves unexpectedly, examine this property to get more information.

top
LastMethodSuccess
property LastMethodSuccess: Integer

Indicate whether the last method call succeeded or failed. A value of 1 indicates success, a value of 0 indicates failure. This property is automatically set for method calls. It is not modified by property accesses. The property is automatically set to indicate success for the following types of method calls:

  • Any method that returns a string.
  • Any method returning a Chilkat object, binary bytes, or a date/time.
  • Any method returning a standard boolean status value where success = 1 and failure = 0.
  • Any method returning an integer where failure is defined by a return value less than zero.

Note: Methods that do not fit the above requirements will always set this property equal to 1. For example, a method that returns no value (such as a "void" in C++) will technically always succeed.

top
LastStringResult
property LastStringResult: WideString readonly

The string return value of the last (string returning) method called. Only available if Chilkat.Global.KeepStringResult is set to 1. This provides a means for obtaining large string results in the SQL Server environment (where limitations exist in getting long strings returned by method calls, but where temp tables can be used for string properties).

top
LastStringResultLen
property LastStringResultLen: Integer readonly

The length, in characters, of the string contained in the LastStringResult property.

top
LittleEndian
property LittleEndian: Integer

The default value is 0, which means that signatures and encrypted output will be created using the big endian byte ordering. A value of 1 will produce little-endian output, which is what Microsoft's Crypto API produces.

Important: Prior to v9.5.0.49, this property behaved the opposite as it should for encryption. When updating from an older version of Chilkat to v9.5.0.49 or greater, the following change is required:

  • If the application did NOT explicity set the LittleEndian property, then no change is required for encryption/decryption. If signatures were being created or verified, then explicitly set this property to 1.
  • If the application explicitly set this property, then reverse the setting ONLY if doing encryption/decryption. No changes are required if doing signature creation/verification.

top
NoUnpad
property NoUnpad: Integer

If 1, skips unpadding when decrypting. The default is 0. This property value is typically left unchanged.

top
NumBits
property NumBits: Integer readonly

The number of bits of the key generated or imported into this RSA encryption object. Keys ranging in size from 384 bits to 4096 bits can be generated by calling GenerateKey. A public or private key may be imported by calling ImportPublicKey or ImportPrivateKey. A key must be available either via GenerateKey or import before any of the encrypt/decrypt methods may be called.

top
OaepHash
property OaepHash: WideString
Introduced in version 9.5.0.48

Selects the hash algorithm for use within OAEP padding. The valid choices are "sha1", "sha256", "sha384", "sha512", "md2", "md5", "haval", "ripemd128", "ripemd160","ripemd256", or "ripemd320". The default is "sha1".

top
OaepLabel
property OaepLabel: WideString
Introduced in version 9.5.0.95

The optional RSA encryption OAEP label. This property is the hex representation of the OAEP label bytes to be used when encrypting with OAEP padding. In virtually all cases, it is left empty (the label is 0 bytes in length). Only set this property if you have a specific need. Otherwise, leave it empty.

top
OaepMgfHash
property OaepMgfHash: WideString
Introduced in version 9.5.0.71

Selects the MGF (mask generation) hash algorithm for use within OAEP padding. The valid choices are "sha1", "sha256", "sha384", "sha512", "md2", "md5", "haval", "ripemd128", "ripemd160","ripemd256", or "ripemd320". The default is "sha1".

top
OaepPadding
property OaepPadding: Integer

Controls whether Optimal Asymmetric Encryption Padding (OAEP) is used for the padding scheme (for encrypting/decrypting). If set to 0, PKCS1 v1.5 padding is used. If set to 1, PKCS1 v2.0 (OAEP) padding is used.

Important: The OAEP padding algorithm uses randomly generated bytes. Therefore, the RSA result will be different each time, even if all of the other inputs are identical. For example, if you RSA encrypt or sign the same data using the same key 100 times, the output will appear different each time, but they are all valid.

When creating digital signatures, this property controls whether RSA-PSS or PKCS1 v1.5 is used. If 1, then the RSA-PSS signature scheme is used. The default value of this property is 0.

More Information and Examples
top
PssSaltLen
property PssSaltLen: Integer
Introduced in version 9.5.0.80

Selects the PSS salt length when RSASSA-PSS padding is selected for signatures. The default value is -1 to indicate that the length of the hash function should be used. For example, if the hash function is SHA256, then the PSS salt length will be 32 bytes. Can be optionally set to a value such as 20 if a specific salt length is required. This property should normally remain at the default value.

top
UncommonOptions
property UncommonOptions: WideString
Introduced in version 10.1.0

This is a catch-all property to be used for uncommon needs. This property defaults to the empty string and should typically remain empty.

top
VerboseLogging
property VerboseLogging: Integer

If set to 1, then the contents of LastErrorText (or LastErrorXml, or LastErrorHtml) may contain more verbose information. The default value is 0. Verbose logging should only be used for debugging. The potentially large quantity of logged information may adversely affect peformance.

top
Version
property Version: WideString readonly

Version of the component/library, such as "9.5.0.94"

More Information and Examples
top

Methods

DecryptBd
function DecryptBd(bd: TChilkatBinData; usePrivateKey: Integer): Integer;
Introduced in version 9.5.0.76

RSA decrypts the contents of bd. usePrivateKey should be set to 1 if the private key is to be used for decrypting. Otherwise it should be set to 0 if the public key is to be used for decrypting.

Important: If trying to match OpenSSL results, set the LittleEndian property = 0.

Returns 1 for success, 0 for failure.

top
DecryptBytes
function DecryptBytes(inData: OleVariant; usePrivateKey: Integer): OleVariant;

Decrypts byte data using the RSA encryption algorithm. usePrivateKey should be set to 1 if the private key is to be used for decrypting. Otherwise it should be set to 0 if the public key is to be used for decrypting.

Important: If trying to match OpenSSL results, set the LittleEndian property = 0.

Returns a zero-length byte array (as an OleVariant) on failure.
An empty array will have a VarArrayHighBound of -1 meaning 0 elements.

top
DecryptBytesENC
function DecryptBytesENC(str: WideString; bUsePrivateKey: Integer): OleVariant;

Same as DecryptBytes, except the input is an encoded string. The encoding is specified by the EncodingMode property, which can have values such as "base64", "hex", "quoted-printable", "url", etc.

Important: If trying to match OpenSSL results, set the LittleEndian property = 0.

Returns a zero-length byte array (as an OleVariant) on failure.
An empty array will have a VarArrayHighBound of -1 meaning 0 elements.

top
DecryptString
function DecryptString(encBytes: OleVariant; usePrivateKey: Integer): WideString;

Decrypts encrypted string data and returns an unencrypted string. usePrivateKey should be set to 1 if the private key is to be used for decrypting. Otherwise it should be set to 0 if the public key is to be used. The Charset property controls how the component interprets the decrypted string. Depending on the programming language, strings are returned to the application as Unicode, utf-8, or ANSI. Internal to DecryptString, the decrypted string is automatically converted from the charset specified by the Charset property to the encoding required by the calling programming language.

Important: If trying to match OpenSSL results, set the LittleEndian property = 0.

Returns a zero-length WideString on failure

top
DecryptStringENC
function DecryptStringENC(str: WideString; usePrivateKey: Integer): WideString;

Same as DecryptString, except the input is an encoded string. The encoding is specified by the EncodingMode property, which can have values such as "base64", "hex", "quoted-printable", "url", etc.

Important: If trying to match OpenSSL results, set the LittleEndian property = 0.

Returns a zero-length WideString on failure

top
EncryptBd
function EncryptBd(bd: TChilkatBinData; usePrivateKey: Integer): Integer;
Introduced in version 9.5.0.76

RSA encrypts the contents of bd. usePrivateKey should be set to 1 if the private key is to be used for encrypting. Otherwise it should be set to 0 if the public key is to be used for encrypting.

Important: If trying to match OpenSSL results, set the LittleEndian property = 0.

Note: Except for special situations, the public key should always be used for encrypting, and the private key for decrypting. This makes sense because an encrypted message is sent to a recipient, and the recipient is the only one in possession of the private key, and therefore the only one that can decrypt and read the message.

Returns 1 for success, 0 for failure.

top
EncryptBytes
function EncryptBytes(binaryData: OleVariant; usePrivateKey: Integer): OleVariant;

Encrypts byte data using the RSA encryption algorithm. usePrivateKey should be set to 1 if the private key is to be used for encrypting. Otherwise it should be set to 0 if the public key is to be used for encrypting.

Important: If trying to match OpenSSL results, set the LittleEndian property = 0.

Note: Except for special situations, the public key should always be used for encrypting, and the private key for decrypting. This makes sense because an encrypted message is sent to a recipient, and the recipient is the only one in possession of the private key, and therefore the only one that can decrypt and read the message.

Returns a zero-length byte array (as an OleVariant) on failure.
An empty array will have a VarArrayHighBound of -1 meaning 0 elements.

top
EncryptBytesENC
function EncryptBytesENC(data: OleVariant; bUsePrivateKey: Integer): WideString;

Same as EncryptBytes, except the output is an encoded string. The encoding is specified by the EncodingMode property, which can have values such as "base64", "hex", "quoted-printable", "url", etc.

Important: If trying to match OpenSSL results, set the LittleEndian property = 0.

Note: Except for special situations, the public key should always be used for encrypting, and the private key for decrypting. This makes sense because an encrypted message is sent to a recipient, and the recipient is the only one in possession of the private key, and therefore the only one that can decrypt and read the message.

Returns a zero-length WideString on failure

top
EncryptString
function EncryptString(stringToEncrypt: WideString; usePrivateKey: Integer): OleVariant;

Encrypts a string using the RSA encryption algorithm. usePrivateKey should be set to 1 if the private key is to be used for encrypting. Otherwise it should be set to 0 if the public key is to be used for encrypting. The string is first converted (if necessary) to the character encoding specified by the Charset property before encrypting. The encrypted bytes are returned.

Important: If trying to match OpenSSL results, set the LittleEndian property = 0.

Note: Except for special situations, the public key should always be used for encrypting, and the private key for decrypting. This makes sense because an encrypted message is sent to a recipient, and the recipient is the only one in possession of the private key, and therefore the only one that can decrypt and read the message.

Returns a zero-length byte array (as an OleVariant) on failure.
An empty array will have a VarArrayHighBound of -1 meaning 0 elements.

More Information and Examples
top
EncryptStringENC
function EncryptStringENC(str: WideString; bUsePrivateKey: Integer): WideString;

Same as EncryptString, except the output is an encoded string. The encoding is specified by the EncodingMode property, which can have values such as "base64", "hex", "quoted-printable", "url", etc.

Important: If trying to match OpenSSL results, set the LittleEndian property = 0.

Note: Except for special situations, the public key should always be used for encrypting, and the private key for decrypting. This makes sense because an encrypted message is sent to a recipient, and the recipient is the only one in possession of the private key, and therefore the only one that can decrypt and read the message.

Returns a zero-length WideString on failure

top
ExportPrivateKey
function ExportPrivateKey(): WideString;

Exports the private-key of an RSA key pair to XML format. This is typically called after generating a new RSA key via the GenerateKey method.

Returns a zero-length WideString on failure

top
ExportPrivateKeyObj
function ExportPrivateKeyObj(): TPrivateKey;
Introduced in version 9.5.0.40

Exports the private-key to a private key object. This is typically called after generating a new RSA key via the GenerateKey method. Once the private key object is obtained, it may be saved in a variety of different formats.

Returns nil on failure

More Information and Examples
top
ExportPublicKey
function ExportPublicKey(): WideString;

Exports the public-key of an RSA key pair to XML format. This is typically called after generating a new RSA key via the GenerateKey method.

Returns a zero-length WideString on failure

top
ExportPublicKeyObj
function ExportPublicKeyObj(): TPublicKey;
Introduced in version 9.5.0.40

Exports the public key to a public key object. Once the public key object is obtained, it may be saved in a variety of different formats.

Returns nil on failure

More Information and Examples
top
GenerateKey
function GenerateKey(numBits: Integer): Integer;

Generates a new RSA public/private key pair. The number of bits can range from 512 to 8192. Typical key lengths are 1024, 2048, or 4096 bits. After successful generation, the public/private parts of the key can be exported to XML via the ExportPrivateKey and ExportPublicKey methods.

Note: Prior to version 9.5.0.49, the max key size was 4096 bits. Generating an 8192-bit RSA key takes a considerable amount of time and CPU processing power. There are no event callbacks or progress monitoring for RSA key generation. Calling this will block the thread until it returns.

Returns 1 for success, 0 for failure.

More Information and Examples
top
ImportPrivateKey
function ImportPrivateKey(xmlKey: WideString): Integer;

Imports a private key from XML format. After successful import, the private key can be used to encrypt or decrypt. A private key (by definition) contains both private and public parts. This is because the public key consist of modulus and exponent. The private key consists of modulus, exponent, P, Q, DP, DQ, InverseQ, and D using base64 representation:

<RSAKeyValue>
  <Modulus>...</Modulus>
  <Exponent>...</Exponent>
  <P>...</P>
  <Q>...</Q>
  <DP>...</DP>
  <DQ>...</DQ>
  <InverseQ>...</InverseQ>
  <D>...</D>
</RSAKeyValue>

Important: The Rsa object can contain either a private key or a public key, but not both. Importing a private key overwrites the existing key regardless of whether the type of key is public or private.

Returns 1 for success, 0 for failure.

top
ImportPrivateKeyObj
function ImportPrivateKeyObj(key: TPrivateKey): Integer;
Introduced in version 9.5.0.40

Imports a private key from a private key object. The imported private key is used in methods that sign or decrypt.

Returns 1 for success, 0 for failure.

top
ImportPublicKey
function ImportPublicKey(xmlKey: WideString): Integer;

Imports a public key from XML format. After successful import, the public key can be used to encrypt or decrypt.

Note: Importing a public key overwrites the key that is currently contained in this object - even if it's a private key.

A public key consists of modulus and exponent using base64 representation:

<RSAPublicKey>
  <Modulus>...</Modulus>
  <Exponent>...</Exponent>
</RSAPublicKey>

Important: The Rsa object can contain either a private key or a public key, but not both. Importing a private key overwrites the existing key regardless of whether the type of key is public or private.

Returns 1 for success, 0 for failure.

top
ImportPublicKeyObj
function ImportPublicKeyObj(key: TPublicKey): Integer;
Introduced in version 9.5.0.40

Imports a public key from a public key object. The imported public key is used in methods that encrypt data or verify signatures.

Returns 1 for success, 0 for failure.

top
OpenSslSignBd
function OpenSslSignBd(bd: TChilkatBinData): Integer;
Introduced in version 9.5.0.77

Duplicates OpenSSL's rsautl utility for creating RSA signatures. The contents of bd are signed. If successful, the result is that bd contains the RSA signature that itself contains (embeds) the original data.

Returns 1 for success, 0 for failure.

top
OpenSslSignBytes
function OpenSslSignBytes(data: OleVariant): OleVariant;

Duplicates OpenSSL's rsautl utility for creating RSA signatures. Input data consists of binary bytes, and returns the signature bytes.

Returns a zero-length byte array (as an OleVariant) on failure.
An empty array will have a VarArrayHighBound of -1 meaning 0 elements.

top
OpenSslSignBytesENC
function OpenSslSignBytesENC(data: OleVariant): WideString;

Duplicates OpenSSL's rsautl utility for creating RSA signatures. Input data consists of binary bytes, and returns the signature as a string encoded according to the EncodingMode property (base64, hex, etc.).

Returns a zero-length WideString on failure

top
OpenSslSignString
function OpenSslSignString(str: WideString): OleVariant;

Duplicates OpenSSL's rsautl utility for creating RSA signatures. Input data is a string, and returns the signature bytes.

Returns a zero-length byte array (as an OleVariant) on failure.
An empty array will have a VarArrayHighBound of -1 meaning 0 elements.

top
OpenSslSignStringENC
function OpenSslSignStringENC(str: WideString): WideString;

Duplicates OpenSSL's rsautl utility for creating RSA signatures. Input data is a string, and returns the signature as a string encoded according to the EncodingMode property (base64, hex, etc.).

Returns a zero-length WideString on failure

top
OpenSslVerifyBd
function OpenSslVerifyBd(bd: TChilkatBinData): Integer;
Introduced in version 9.5.0.77

Duplicates OpenSSL's rsautl utility for verifying RSA signatures and recovering the original data. On input, the bd contains the RSA signature that embeds the original data. If successful (i.e. the signature was verified), then the bd is transformed to contain just the original data.

Returns 1 for success, 0 for failure.

top
OpenSslVerifyBytes
function OpenSslVerifyBytes(signature: OleVariant): OleVariant;

Duplicates OpenSSL's rsautl utility for verifying RSA signatures and recovering the original data. Input data consists of the raw signature bytes and returns the original bytes.

Returns a zero-length byte array (as an OleVariant) on failure.
An empty array will have a VarArrayHighBound of -1 meaning 0 elements.

top
OpenSslVerifyBytesENC
function OpenSslVerifyBytesENC(str: WideString): OleVariant;

Duplicates OpenSSL's rsautl utility for verifying RSA signatures and recovering the original data. Input data is a signature string encoded according to the EncodingMode property (base64, hex, etc.). Returns the original bytes.

Returns a zero-length byte array (as an OleVariant) on failure.
An empty array will have a VarArrayHighBound of -1 meaning 0 elements.

top
OpenSslVerifyString
function OpenSslVerifyString(data: OleVariant): WideString;

Duplicates OpenSSL's rsautl utility for verifying RSA signatures and recovering the original data. Input data consists of the raw signature bytes and returns the original string.

Returns a zero-length WideString on failure

top
OpenSslVerifyStringENC
function OpenSslVerifyStringENC(str: WideString): WideString;

Duplicates OpenSSL's rsautl utility for verifying RSA signatures and recovering the original data. Input data is a signature string encoded according to the EncodingMode property (base64, hex, etc.). Returns the original string.

Returns a zero-length WideString on failure

top
SetX509Cert
function SetX509Cert(cert: TChilkatCert; usePrivateKey: Integer): Integer;
Introduced in version 9.5.0.73

Provides the private or public key indirectly through a certificate. This method is especially useful on Windows computers where the private key is installed as non-exportable (such as on a hardware token).

Returns 1 for success, 0 for failure.

top
SignBd
function SignBd(bdData: TChilkatBinData; hashAlgorithm: WideString; bdSig: TChilkatBinData): Integer;
Introduced in version 9.5.0.77

Creates an RSA digital signature by hashing the contents of bdData and then signing the hash. The hash algorithm is specified by hashAlgorithm, which may be "SHA-1", "MD5", "MD2", "SHA-256", "SHA-384", or "SHA-512". The resulting signature is returned in bdSig.

Important: If trying to match OpenSSL results, set the LittleEndian property = 0. (The LittleEndian property should also be set to 0 to match Amazon web services, such as CloudFront.)

A private key is required to create digital signatures.

More Information and Examples
top
SignBytes
function SignBytes(binaryData: OleVariant; hashAlgorithm: WideString): OleVariant;

Creates an RSA digital signature by hashing binaryData and then signing the hash. The hash algorithm is specified by hashAlgorithm, which may be "SHA-1", "MD5", "MD2", "SHA-256", "SHA-384", or "SHA-512". The recommended hash algorithm is "SHA-1".

Important: If trying to match OpenSSL results, set the LittleEndian property = 0. (The LittleEndian property should also be set to 0 to match Amazon web services, such as CloudFront.)

A private key is required to create a digital signature.

An error is indicated when a byte array of 0 length is returned.

Returns a zero-length byte array (as an OleVariant) on failure.
An empty array will have a VarArrayHighBound of -1 meaning 0 elements.

top
SignBytesENC
function SignBytesENC(binaryData: OleVariant; hashAlgorithm: WideString): WideString;

Creates an RSA digital signature by hashing binaryData and then signing the hash. The hash algorithm is specified by hashAlgorithm, which may be "SHA-1", "MD5", "MD2", "SHA-256", "SHA-384", or "SHA-512". The recommended hash algorithm is "SHA-1". The digital signature is returned as an encoded string, where the encoding is specified by the EncodingMode property.

Important: If trying to match OpenSSL results, set the LittleEndian property = 0. (The LittleEndian property should also be set to 0 to match Amazon web services, such as CloudFront.)

A private key is required to create a digital signature.

An error is indicated when null reference is returned.

Returns a zero-length WideString on failure

top
SignHash
function SignHash(hashBytes: OleVariant; hashAlg: WideString): OleVariant;

The same as the SignBytes method, except the hash to be signed is passed directly.

Returns a zero-length byte array (as an OleVariant) on failure.
An empty array will have a VarArrayHighBound of -1 meaning 0 elements.

top
SignHashENC
function SignHashENC(encodedHash: WideString; hashAlg: WideString): WideString;

The same as SignBytesENC except the hash is passed directly.

Returns a zero-length WideString on failure

top
SignString
function SignString(strToBeHashed: WideString; hashAlgorithm: WideString): OleVariant;

Creates an RSA digital signature by hashing strToBeHashed and then signing the hash. The hash algorithm is specified by hashAlgorithm, which may be "SHA-1", "MD5", "MD2", "SHA-256", "SHA-384", or "SHA-512". The recommended hash algorithm is "SHA-1".

Important: If trying to match OpenSSL results, set the LittleEndian property = 0. (The LittleEndian property should also be set to 0 to match Amazon web services, such as CloudFront.)

A private key is required to create a digital signature.

An error is indicated when a byte array of 0 length is returned.

Returns a zero-length byte array (as an OleVariant) on failure.
An empty array will have a VarArrayHighBound of -1 meaning 0 elements.

top
SignStringENC
function SignStringENC(strToBeHashed: WideString; hashAlgorithm: WideString): WideString;

Creates an RSA digital signature by hashing strToBeHashed and then signing the hash. The hash algorithm is specified by hashAlgorithm, which may be "SHA-1", "MD5", "MD2", "SHA-256", "SHA-384", or "SHA-512". The recommended hash algorithm is "SHA-1". The digital signature is returned as an encoded string, where the encoding is specified by the EncodingMode property.

Important: If trying to match OpenSSL results, set the LittleEndian property = 0. (The LittleEndian property should also be set to 0 to match Amazon web services, such as CloudFront.)

A private key is required to create a digital signature.

An error is indicated when null reference is returned.

Returns a zero-length WideString on failure

top
SnkToXml
function SnkToXml(filename: WideString): WideString;

Imports a .snk file to an XML document that can be imported via the ImportPrivateKey method.

Returns a zero-length WideString on failure

top
VerifyBd
function VerifyBd(bdData: TChilkatBinData; hashAlgorithm: WideString; bdSig: TChilkatBinData): Integer;
Introduced in version 9.5.0.77

Verifies an RSA digital signature. Returns 1 if the signature in bdSig is valid an confirms that the original data in bdData has not been modified. The hashAlgorithm may be "SHA-1", "MD5", "MD2", "SHA-256", "SHA-384", or "SHA-512".

Returns 1 for success, 0 for failure.

More Information and Examples
top
VerifyBytes
function VerifyBytes(originalData: OleVariant; hashAlgorithm: WideString; signatureBytes: OleVariant): Integer;

Verifies an RSA digital signature. Returns 1 if the signature is valid for the originalData. The hashAlgorithm may be "SHA-1", "MD5", "MD2", "SHA-256", "SHA-384", or "SHA-512". The recommended hash algorithm is "SHA-1".

top
VerifyBytesENC
function VerifyBytesENC(originalData: OleVariant; hashAlgorithm: WideString; encodedSig: WideString): Integer;

Verifies an RSA digital signature. Returns 1 if the signature is valid for the originalData. The hashAlgorithm may be "SHA-1", "MD5", "MD2", "SHA-256", "SHA-384", or "SHA-512". The recommended hash algorithm is "SHA-1".

The encodedSig is a digital signature encoded according to the EncodingMode property (i.e. base64, hex, etc.).

top
VerifyHash
function VerifyHash(hashBytes: OleVariant; hashAlg: WideString; sigBytes: OleVariant): Integer;

The same as VerifyBytes except the hash of the original data is passed directly.

top
VerifyHashENC
function VerifyHashENC(encodedHash: WideString; hashAlg: WideString; encodedSig: WideString): Integer;

The same as VerifyBytesENC except the hash of the original data is passed directly.

More Information and Examples
top
VerifyPrivateKey
function VerifyPrivateKey(xml: WideString): Integer;

Returns 1 if the XML contains a valid RSA private key. Otherwise returns 0.

Returns 1 for success, 0 for failure.

top
VerifyString
function VerifyString(originalString: WideString; hashAlgorithm: WideString; binarySig: OleVariant): Integer;

Verifies an RSA digital signature. Returns 1 if the signature is valid for the originalString. The hashAlgorithm may be "SHA-1", "MD5", "MD2", "SHA-256", "SHA-384", or "SHA-512". The recommended hash algorithm is "SHA-1".

top
VerifyStringENC
function VerifyStringENC(originalString: WideString; hashAlgorithm: WideString; encodedSig: WideString): Integer;

Verifies an RSA digital signature. Returns 1 if the signature is valid for the originalString. The hashAlgorithm may be "SHA-1", "MD5", "MD2", "SHA-256", "SHA-384", or "SHA-512". The recommended hash algorithm is "SHA-1".

The encodedSig is a digital signature encoded according to the EncodingMode property (i.e. base64, hex, etc.).

More Information and Examples
top